FEATURES
Nonvolatile Memory Preset Maintains Wiper Settings Dual Channel, 256-Position Resolution
Full Monotonic Operation DNL < 1 LSB
$10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ Terminal Resistance
Linear or Log Taper Settings
Push-Button Increment/Decrement Compatible
SPI-Compatible Serial Data Input with Readback Function
3 V to 5 V Single Supply or $\pm 2.5 \mathrm{~V}$ Dual Supply Operation
14 Bytes of User EEMEM Nonvolatile Memory for Constant Storage
Permanent Memory Write Protection
100-Year Typical Data Retention $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$

APPLICATIONS

Mechanical Potentiometer Replacement
Instrumentation: Gain, Offset Adjustment
Programmable Voltage-to-Current Conversion
Programmable Filters, Delays, Time Constants
Line Impedance Matching
Power Supply Adjustment
DIP Switch Setting

GENERAL DESCRIPTION

The AD 5232 device provides a nonvolatile, dual-channel, digitally controlled variable resistor (VR) with 256-position resolution. These devices perform the same electronic adjustment function as a potentiometer or variable resistor. The AD 5232's versatile programming via a microcontroller allows multiple modes of operation and adjustment.
In the direct program mode a predetermined setting of the RDAC register can be loaded directly from the microcontroller. Another key mode of operation allows the RDAC register to be refreshed with the setting previously stored in the EEM EM register. When changes are made to the RDAC register to establish a new wiper position, the value of the setting can be saved into the EEM EM by executing an EEM EM save operation. Once the settings are saved in the EEM EM register these values will be automatically transferred to the RDAC register to set the wiper position at system power ON. Such operation is enabled by the internal preset strobe and the preset can also be accessed externally.
All internal register contents can be read out of the serial data output (SDO). This includes the RDAC1 and RDAC2 registers, the corresponding nonvolatile EEM EM 1 and EEM EM 2 registers, and the 14 spare U SER EEM EM registers available for constant storage.
*Patent pending.
REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

The basic mode of adjustment is the increment and decrement command controlling the present setting of the Wiper position setting (RDAC) register. An internal scratch pad RDAC register can be moved UP or DOWN one step of the nominal terminal resistance between terminals A and B. This linearly changes the wiper to B terminal resistance ($R_{W B}$) by one position segment of the devices' end-to-end resistance (R_{AB}). For exponential/logarithmic changes in wiper setting, a left/right shift command adjusts levels in $\pm 6 \mathrm{~dB}$ steps, which can be useful for audio and light alarm applications.
The AD 5232 is available in a thin T SSOP-16 package. All parts are guaranteed to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. An evaluation board is available, Part Number: AD 5232EVAL.

Figure 1. Symmetrical RDAC Operation

AD5232- SPECIFICATIONS
ELECTRICAL CHARACTERISTCS, $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ VERSIONS
($V_{D D}=3 \mathrm{~V} \pm 10 \%$ or $5 \mathrm{~V} \pm 10 \%$ and $V_{S S}=0 \mathrm{~V}, V_{A}=+V_{D D}, V_{B}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
DC CHARACTERISTICS RHEOSTAT MODE - Specifications Resistor Differential N onlinearity ${ }^{2}$ Resistor Nonlinearity ${ }^{2}$ Nominal Resistor Tolerance Resistance T emperature Coefficient Wiper Resistance	ly to All V R-DNL R-INL $\Delta \mathrm{R}_{\text {AB }}$ $\Delta R_{A B} / \Delta T$ R_{w} R_{w}	$\begin{aligned} & R_{W B}, V_{A}=N C \\ & R_{W B}, V_{A}=N C \\ & I_{W}=100 \mu A, V_{D D}=5.5 \mathrm{~V}, \operatorname{Code}=1 E_{H} \\ & I_{W}=100 \mu A, V_{D D}=3 \mathrm{~V}, C o d e=1 E_{H} \end{aligned}$	$\begin{aligned} & -1 \\ & -0.4 \\ & -40 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \\ & 600 \\ & 5 \\ & 200 \end{aligned}$	$\begin{aligned} & +1 \\ & +0.4 \\ & +20 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \% \text { FS } \\ & \% \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \Omega \\ & \Omega \end{aligned}$
POTENTIOMETER DIVIDER MODE Resolution Differential Nonlinearity ${ }^{3}$ Integral N onlinearity ${ }^{3}$ Voltage Divider TemperatureC oefficient Full-Scale Error Zero-Scale Error	Specificati N DNL INL $\Delta V_{w} / \Delta T$ $\mathrm{V}_{\text {wfse }}$ $\mathrm{V}_{\text {WZSE }}$	Apply to All VRs $\begin{aligned} & \text { Code }=\text { H alf-Scale } \\ & \text { Code }=\text { Full-Scale } \\ & \text { Code }=\text { Zero-Scale } \end{aligned}$	$\begin{aligned} & 8 \\ & -1 \\ & -0.4 \\ & -3 \\ & 0 \end{aligned}$	$\pm 1 / 2$ 15	$\begin{aligned} & +1 \\ & +0.4 \\ & 0 \\ & +3 \\ & \hline \end{aligned}$	Bits LSB \% FS ppm $/{ }^{\circ} \mathrm{C}$ \% FS \% FS
RESISTOR TERMINALS Terminal Voltage Range ${ }^{4}$ C apacitance ${ }^{5} \mathrm{Ax}, \mathrm{Bx}$ Capacitance ${ }^{5} \mathrm{~W} \mathrm{x}$ Common-M ode Leakage Current5, 6	$\begin{aligned} & V_{A, B, W} \\ & C_{A, B} \\ & C_{W} \\ & I_{C M} \\ & \hline \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$, M easured to GND, Code $=$ Half-Scale $\mathrm{f}=1 \mathrm{MHz}$, M easured to GND, Code $=$ Half-Scale $\mathrm{V}_{\mathrm{w}}=\mathrm{V}_{\mathrm{DD}} / 2$	V_{ss}	45 60 0.01	$V_{D D}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mu \mathrm{~A} \end{aligned}$
DIGITAL INPUTS AND OUTPUTS Input Logic High Input Logic Low Input Logic High Input Logic Low Input Logic High Input Logic Low Output Logic High (SDO and RDY) Output Logic Low Input Current Input Capacitance ${ }^{5}$	$\begin{aligned} & V_{I H} \\ & V_{I L} \\ & V_{I H} \\ & V_{I L} \\ & V_{I H} \\ & V_{I L} \\ & V_{O H} \\ & V_{O L} \\ & I_{I L} \\ & C_{\text {I }} \end{aligned}$	With Respect to GND, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ With Respect to GND, $V_{D D}=5 \mathrm{~V}$ With Respect to GND, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ With Respect to GND, $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ With Respect to GND, $\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}$, $V_{S S}=-2.5 \mathrm{~V}$ With Respect to GND, $\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V}$, $V_{S S}=-2.5 \mathrm{~V}$ $R_{\text {PULL-Up }}=2.2 \mathrm{k} \Omega$ to 5 V $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {LOGIC }}=5 \mathrm{~V}$ $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}	$\begin{aligned} & 2.4 \\ & 2.1 \\ & 2.0 \\ & 4.9 \end{aligned}$	0.5	0.8 0.6	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLIES Single-Supply Power Range Dual-Supply Power Range Positive Supply Current Programming M ode Current Read M ode Current ${ }^{7}$ N egative Supply Current Power Dissipation ${ }^{8}$ Power Supply Sensitivity ${ }^{5}$	$V_{D D}$ $V_{D D} / V_{S S}$ ID $I_{D(P G)}$ IDD(XFR) $I_{\text {ss }}$ PDISS PSS	$\begin{aligned} & V_{S S}=0 V \\ & V_{I H}=V_{D D} \text { or } V_{I L}=G N D \\ & V_{I H}=V_{D D} \text { or } V_{I L}=G N D \\ & V_{I H}=V_{D D} \text { or } V_{I L}=G N D \\ & V_{I H}=V_{D D} \text { or } V_{I L}=G N D, \\ & V_{D D}=+2.5 V, V_{S S}=-2.5 V \\ & V_{I H}=V_{D D} \text { or } V_{I L}=G N D \\ & \Delta V_{D D}=5 V \pm 10 \% \end{aligned}$	$\begin{aligned} & 2.7 \\ & \pm 2.25 \\ & \\ & 0.9 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 35 \\ & 3 \\ & \\ & 3.5 \\ & 0.018 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 5.5 \\ & \pm 2.75 \\ & 10 \\ & 9 \\ & \\ & 10 \\ & 0.05 \\ & 0.01 \end{aligned}$	V V $\mu \mathrm{A}$ mA mA $\mu \mathrm{A}$ mW \%/\%

AD5232

| Parameter | Symbol | Conditions | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | Unit

NOTES

${ }^{1} \mathrm{~T}$ ypical parameters represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=5 \mathrm{~V}$.
${ }^{2}$ Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper postions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. $I_{W} \sim 50 \mu A @ V_{D D}=2.7 \mathrm{~V}$ and $I_{W} \sim 400 \mu A @ V_{D D}=5 \mathrm{~V}$ for the $\mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega$ version, $\mathrm{I}_{\mathrm{W}} \sim 50 \mu \mathrm{~A}$ for the $\mathrm{R}_{\mathrm{AB}}=50 \mathrm{k} \Omega$ and $\mathrm{I}_{\mathrm{W}} \sim 25 \mu \mathrm{~A}$ for the $\mathrm{R}_{\mathrm{AB}}=100 \mathrm{k} \Omega$ version. See Figure 13.
${ }^{3} / N L$ and $D N L$ are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output D / A converter. $V_{A}=V_{D D}$ and $V_{B}=V_{S S}$. DNL specification limits of ± 1 LSB maximum are Guaranteed M onotonic operating conditions. See Figure 14.
${ }^{4}$ Resistor terminals A, B, W have no limitations on polarity with respect to each other. Dual Supply Operation enables ground-referenced bipolar signal adjustment.
${ }^{5}$ Guaranteed by design and not subject to production test.
${ }^{6}$ C ommon-mode leakage current is a measure of the dc leakage from any terminal $\mathrm{A}, \mathrm{B}, \mathrm{W}$ to a common-mode bias level of $\mathrm{V}_{\mathrm{DD}} / 2$.
${ }^{7}$ T ransfer (XFR) M ode current is not continuous. Current consumed while EEM EM locations are read and transferred to the RDAC register. See TPC 9.
${ }^{8} P_{D I S S}$ is calculated from (I $\left.I_{D D} \times V_{D D}\right)+\left(I_{S S} \times V_{S S}\right)$.
${ }^{9} \mathrm{All}$ dynamic characteristics use $\mathrm{V}_{D D}=+2.5 \mathrm{~V}$ and $\mathrm{V}_{S S}=-2.5 \mathrm{~V}$ unless otherwise noted.
${ }^{10}$ See timing diagram for location of measured values. All input control voltages are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}(10 \%$ to 90% of 3 V) and timed from a voltage level of 1.5 V . Switching characteristics are measured using both $\mathrm{V}_{D D}=3 \mathrm{~V}$ or 5 V .
${ }^{11}$ Propagation delay depends on value of $\mathrm{V}_{D D}, R_{\text {PULL }}$ up, and C_{L}. See applications text.
${ }^{12}$ Valid for commands that do not activate the RDY $\overline{\text { pin }}$.
${ }^{13}$ RDY pin low only for instruction commands $8,9,10,2,3$, and the $\overline{P R}$ hardware pulse: CM D_8 $\sim 1 \mathrm{~ms} ;$ CM D_9,10 $\sim 0.12 \mathrm{~ms} ; C M D _2,3 \sim 20 \mathrm{~ms}$. Device operation at $T_{A}=-40^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}<3 \mathrm{~V}$ extends the save time to 35 ms .
${ }^{14}$ Endurance is qualified to 100,000 cycles as per JEDEC Std. 22 method A 117 and measured at $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, typical endurance at $25^{\circ} \mathrm{C}$ is 700,000 cycles.
${ }^{15}$ Retention lifetime equivalent at junction temperature $\left(T_{J}\right)=55^{\circ} \mathrm{C}$ as per JEDEC Std. 22, M ethod A117. Retention lifetime based on an activation energy of 0.6 eV will derate with junction temperature as shown in Figure 23 in the Flash/EE M emory description section of this data sheet. The AD 5232 contains 9,646 transistors. Die size: 69 mil $\times 115 \mathrm{mil}, 7,993$ sq. mil.
Specifications subject to change without notice

Figure 2a. CPHA = 1 Timing Diagram

Figure 2b. $C P H A=0$ Timing Diagram

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)	
$V_{\text {DD }}$ to GND	V, +7 V
$V_{S S}$ to GND	+0.3V, -7 V
$V_{D D}$ to $V_{S S}$... 7 V	
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{w}$ to $G N D \ldots \mathrm{V}_{S S}-0.3 \mathrm{~V}, \mathrm{~V}_{D D}+0.3 \mathrm{~V}$	
$A_{x}-B_{x}, A_{x}-W_{x}, B_{x}-W_{x}$	
Intermittent ${ }^{2}$. $\pm 20 \mathrm{~mA}$	
Continuous $\pm 2 \mathrm{~mA}$	
Digital Inputs and Output Voltage to	
Operating Temperature Range ${ }^{3} \ldots40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Package Power Dissipation ($\mathrm{T}_{\mathrm{J}} \mathrm{M}$ ax $\left.-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$ Thermal Resistance Junction-to-Ambient θ_{JA},

> TSSOP-16 . 150ºC/W

Thermal Resistance Junction-to-C ase θ_{J},
TSSOP-16
$28^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2} \mathrm{M}$ aximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
${ }^{3}$ Includes programming of nonvolatile memory.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5232 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

	Number of Channels	End-to-End $\mathbf{R}_{\text {AB }}(\mathbf{k} \boldsymbol{\Omega})$	Temperature Range $\left({ }^{\circ} \mathbf{C}\right)$	Package Description	Package Option	Number of Devices per Container	Branding* Information
AD 5232BRU 10	2	10	-40 to +85	TSSOP-16	RU-16	96	$5232 B 10$
AD 5232BRU 10-REEL7	2	10	-40 to +85	T SSOP-16	RU-16	1,000	$5232 B 10$
AD 5232BRU 50	2	50	-40 to +85	T SSOP-16	RU-16	96	$5232 B 50$
AD 5232BRU 50-REEL 7	2	50	-40 to +85	T SSOP-16	RU-16	1,000	$5232 B 50$
AD 5232BRU 100	2	100	-40 to +85	T SSOP-16	RU-16	96	5232BC
AD 5232BRU 100-REEL7	2	100	-40 to +85	T SSOP-16	RU-16	1,000	5232BC

[^0]
PIN CONFIGURATION

$\text { CLK } 1$	-	16 RDY
SDI 2		${ }^{15} \overline{\mathrm{CS}}$
SDO 3		14 PR
GND 4	AD5232	13 WP
$\mathrm{V}_{\mathrm{SS}} 5$	(Not to Scale)	12 VDD
A1 6		11 A2
W1 7		10 w 2
B1 8		9 B 2

PIN FUNCTION DESCRIPTIONS

Pin Number	Mnemonic	Description
1	CLK	Serial Input Register Clock Pin. Shifts in one bit at a time on positive clock edges.
2	SDI	Serial D ata Input Pin. M SB L oaded First.
3	SDO	Serial D ata Output Pin. O pen Drain Output requires external pull-up resistor. Commands 9 and 10 activate the SD 0 output. See T able II. Other commands shift out the previously loaded SDI bit pattern delayed by 16 clock pulses. This allows daisy-chain operation of multiple packages.
4	GND	Ground Pin, Logic Ground Reference.
5	$\mathrm{V}_{\text {SS }}$	N egative Supply. C onnect to zero volts for single supply applications.
6	A1	A Terminal of RDAC1
7	W 1	W iper T erminal of RDAC $1, \operatorname{ADDR}(\operatorname{RDAC} 1)=0_{H}$
8	B1	B Terminal of RDAC1
9	B2	B T erminal of RDAC2
10	W2	Wiper Terminal of RDAC $2, \operatorname{ADDR}(\mathrm{RDAC} 2)=1_{H}$
11	A2	A T erminal of RDAC2
12	$\mathrm{V}_{\text {D }}$	Positive Power Supply Pin
13	WP $\overline{\mathrm{PR}}$	Write Protect Pin. When active low, $\overline{\mathrm{WP}}$ prevents any changes to the present register contents, except $\overline{P R}$ and CMD 1 and 8 will refresh RDAC register from EEM EM. Execute a NOP instruction before returning $\overline{\mathrm{WP}}$ to logic high.
14	$\overline{\mathrm{PR}}$	H ardware O verride Preset Pin. Refreshes the scratch pad register with current contents of the EEM EM register. F actory default loads midscale 80_{H} until EEM EM is loaded with a new value by the user ($\overline{\mathrm{PR}}$ is activated at the logic high transition).
15	$\overline{\mathrm{CS}}$	Serial Register Chip Select Active Low. Serial register operation takes place when $\overline{\mathrm{CS}}$ returns to logic high.
16	RDY	Ready. Active-high open drain output, requires pull-up resistor. Identifies completion of commands $2,3,8,9,10$, and $\overline{\mathrm{PR}}$.

OPERATIONAL OVERVIEW

The AD5232 digital potentiometer is designed to operate as a true variable resistor replacement device for analog signals that remain within the terminal voltage range of $\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{TERM}}<\mathrm{V}_{\mathrm{DD}}$. T he basic voltage range is limited to a $\left|\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right|<5.5 \mathrm{~V}$. The digital potentiometer wiper position is determined by the RDAC register contents. The RDAC register acts as a scratch pad, register allowing as many value changes as necessary to place the potentiometer wiper in the correct position. The scratch pad register can be programmed with any position value using the standard SPI serial interface mode by loading the complete representative data word. Once a desirable position is found, this value can be saved into a corresponding EEM EM register. Thereafter the wiper position will always be set at that position for any future ON-OFF-ON power supply sequence. The EEM EM save process takes approximately 25 ms , during this time the shift register is locked preventing any changes from taking place. The RDY pin indicates the completion of this EEMEM save.

SCRATCH PAD AND EEMEM PROGRAMMING

The scratch pad register (RDAC register) directly controls the position of the digital potentiometer wiper. When the scratch pad register is loaded with all zeros, the wiper will be connected to the B-T erminal of the variable resistor. When the scratch pad register is loaded with midscale code ($1 / 2$ of full-scale position), the wiper will be connected to the middle of the variable resistor. And when the scratch pad is loaded with full-scale code, all 1 s , the wiper will connect to the A-T erminal. Since the scratch pad register is a standard logic register, there is no restriction on the number of changes allowed. The EEM EM registers have a program erase/write cycle limitation described in the Flash/ EEMEM Reliability section.

BASIC OPERATION

T he basic mode of setting the variable resistor wiper position (programming the scratch pad register) is accomplished by loading the serial data input register with the command instruction \#11, which includes the desired wiper position data. W hen the desired wiper position is found, the user loads the serial data input register with the command instruction \#2, which copies the desired wiper position data into the corresponding nonvolatile EEM EM register. After 25 ms the wiper position will be permanently stored in the corresponding nonvolatile EEM EM location. T able I provides an application-programming example listing the sequence of serial data input (SDI) words and the corresponding serial data output appearing at the SDO pin in hexadecimal format.
At system power-on, the scratch pad register is refreshed with the value last saved in the EEM EM register. The factory preset EEM EM value is midscale. The scratch pad (wiper) register can be refreshed with the current contents of the nonvolatile EEM EM register under hardware control by pulsing the $\overline{\mathrm{PR}}$ pin.

Table I. Set Two Digital POTs to Independent Data Values then Save Wiper Positions in Corresponding Nonvolatile EEMEM Registers

SDI	SDO	Action
B040 ${ }_{\text {H }}$	XXXX ${ }_{\text {H }}$	Loads 40_{H} data into RDAC1 register, Wiper W 1 moves to $1 / 4$ full-scale position.
$20 x^{\text {H }}$	$\mathrm{B}^{\text {04 }}{ }_{\text {H }}$	Saves copy of RDAC 1 register contents into corresponding EEM EM 0 register.
B180 ${ }_{\text {H }}$	20 xx H	Loads 80_{H} data into RDAC2 register, W iper W2 moves to $1 / 2$ full-scale position.
$21 \times x_{H}$	B180 ${ }_{\text {H }}$	Saves copy of RDAC 2 register contents into corresponding EEM EM 1 register.

Be aware that the $\overline{\mathrm{PR}}$ pulse first sets the wiper at midscale when brought to logic zero, and then on the positive transition to logic high, it reloads the D AC wiper register with the contents of EEM EM. M any additional advanced programming commands are available to simplify the variable resistor adjustment process.

For example, the wiper position can be changed one step at a time by using the software-controlled Increment/D ecrement instruction or, by 6 dB at a time, with the Shift Left/Right instruction command. Once an Increment, D ecrement, or Shift command has been loaded into the shift register, subsequent $\overline{\mathrm{CS}}$ strobes will repeat this command. This is useful for push-button control applications. See the Advanced Control M odes description following Table I. A serial data output SD 0 pin is available for daisy chaining and for readout of the internal register contents. The serial input data register uses a 16-bit [instruction/address/data] WORD.

EEMEM PROTECTION

W rite protect ($\overline{\mathrm{WP}}$) disables any changes of the scratch pad register contents regardless of the software commands, except that the EEM EM setting can be refreshed using commands 8 and $\overline{\mathrm{PR}}$. Therefore, the write-protect ($\overline{\mathrm{WP}}$) pin provides a hardware EEM EM protection feature. Execute a NOP command before returning $\overline{\mathrm{WP}}$ to logic high.

DIGITAL INPUT/OUTPUT CONFIGURATION

All digital inputs are ESD-protected high input impedance that can be driven directly from most digital sources. $\overline{\mathrm{PR}}$ and $\overline{\mathrm{WP}}$, which are active at logic low, must be biased to V_{DD} if they are not being used. No internal pull-up resistors are present on any digital input pins.
The SDO and RDY pins are open-drain digital outputs where pull-up resistors are needed only if using these functions. A resistor value in the range of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ optimizes the power and switching speed trade-off.

SERIAL DATA INTERFACE

The AD 5232 contains a 4-wire SPI-compatible digital interface (SDI, SD O, $\overline{\mathrm{CS}}$, and CLK), and uses a 16-bit serial data word loaded M SB first. The format of the SPI-compatible word is shown in Table II. The chip select ($\overline{\mathrm{CS}})$ pin needs to be held low until the complete data word is loaded into the SDI pin. When $\overline{\mathrm{CS}}$ returns high, the serial data word is decoded according to the instructions in T able III. The Command Bits (Cx) control the operation of the digital potentiometer. The Address Bits (Ax) determine which register is activated. The D ata Bits ($D x$) are the values that are loaded into the decoded register. Table IV provides an address map of the EEM EM locations. The last instruction executed prior to a period of no programming activity should be the No Operation (NOP) instruction. This will place the internal logic circuitry in a minimum power dissipation state.

Figure 3. Equivalent Digital Input-Output Logic
The equivalent serial data input and output logic is shown in Figure 3. The open-drain output SDO is disabled whenever chip select $\overline{\mathrm{CS}}$ is logic high. T he SPI interface can be used in two slave modes $\mathrm{CPHA}=1, \mathrm{CPOL}=1$ and $\mathrm{CPHA}=0, \mathrm{CPOL}=0$. CPHA and CPOL refer to the control bits, which dictate SPI timing in these M icroC onverters ${ }^{\circledR}$ and microprocessors: AD uC 812/ADuC 824, M 68H C 11, and M C 68H C16R 1/916R 1.
ESD protection of the digital inputs is shown in Figures 4a and 4b.

Figure 4b. Equivalent $\overline{W P}$ Input Protection

DAISY CHAINING OPERATION

The serial data output pin (SDO) serves two purposes. It can be used to read out the contents of the wiper setting and EEM EM values using instruction 10 and 9 respectively. The remaining instructions (\#0-8, \#11-15) are valid for daisychaining multiple devices in simultaneous operations. D aisy-chaining minimizes the number of port pins required from the controlling IC (see Figure 5). The SD 0 pin contains an open drain N -C hannel FET that requires a pull-up resistor if this function is used. As shown in Figure 5, users need to tie the SDO pin of one package to the SDI pin of the next package. U sers may need to increase the clock period because the pull-up resistor and the capacitive loading at the SD 0-SD I interface may require additional time delay between subsequent packages. If two AD 5232's are daisy-chained, 32 bits of data are required. The first 16 bits go to $U 2$ and the second 16 bits with the same format go to U 1 . The 16 bits are formatted to contain the 4-bit instruction, followed by the 4-bit address, then the 8 bits of data. The $\overline{\mathrm{CS}}$ should be kept low until all 32 bits are locked into their respective serial registers. The $\overline{\mathrm{CS}}$ is then pulled high to complete the operation.

Figure 5. Daisy-Chain Configuration Using SDO

Figure 4a. Equivalent ESD Digital Input Protection
Table II. 16-Bit Serial Data Word

	M SB	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	LSB
AD5232	C3	C2	C1	C0	A3	A2	A1	A0	D 7	D6	D5	D4	D3	D 2	D 1	D0

Command bits are identified as $C x$, address bits are $A x$, and data bits are $D x$. Command instruction codes are defined in T able III.

Table III. Instruction/Operation Truth Table

	Instruction Byte 1								Data Byte 0								Operation
Inst No.	B15 C3	C2	C1	CO	A3	A2	A1	$\begin{aligned} & \text { B8 } \\ & \text { A0 } \end{aligned}$	B7	D6	D5	D4	D3	D2	D1	$\begin{aligned} & \text { B0 } \\ & \text { D0 } \end{aligned}$	
0	0	0	0	0	X	X	X	X	X	X	X	X	X	X	X	X	N o Operation (NOP). Do nothing.
1	0	0	0	1	0	0	0	A0	X	X	X	X	X	X	X	X	W rite contents of EEM EM (A0) to RDAC (A0) Register. This command leaves device in the Read Program power state. T o return part to the idle state, perform NOP instruction \#0.
2	0	0	1	0	0	0	0	A0	X	X	X	X	X	X	X	X	SAVE WIPER SETTING. W rite contents of RDAC (ADDR) to EEM EM (A0)
3	0	0	1	1		AD	D R	>>	D 7	D 6	D 5	D 4	D 3	D2	D 1	D0	W rite contents of Serial Register D ata Byte 0 to EEM EM (ADDR).
4	0	1	0	0	0	0	0	A0	X	X	X	X	X	X	X	X	D ecrement 6 dB right shift contents of RDAC(A0), stops at all "Zeros."
5	0	1	0	1	X	X	X	X	X	X	X	X	X	X	X	X	Decrement All 6 dB right shift contents of all RDAC Registers, stops at all "Zeros."
6	0	1	1	0	0	0	0	A0	X	X	X	X	X	X	X	X	D ecrement contents of RDAC(A0) by "One," stops at all "Zeros."
7	0	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	D ecrement contents of all RDAC Registers by "O ne," stops at all "Zeros."
8	1	0	0	0	0	0	0	0	X	X	X	X	X	X	X	X	RESET. Load all RD ACs with their corresponding EEM EM previously-saved values.
9	1	0	0	1		AD	DR	>>	X	X	X	X	X	X	X	X	Write contents of EEM EM (ADDR) to Serial Register D ata Byte 0.
10	1	0	1	0	0	0	0	A0	X	X	X	X	X	X	X	X	W rite contents of RDAC(A0) to Serial Register D ata Byte 0.
11	1	0	1	1	0	0	0	A0	D 7	D 6	D 5	D 4	D 3	D2	D 1	D0	Write contents of Serial Register D ata Byte 0 to RDAC(A0).
12	1	1	0	0	0	0	0	A0	X	X	X	X	X	X	X	X	Increment 6 dB left shift contents of RDAC(AO), stops at all "Ones."
13	1	1	0	1	X	X	X	X	X	X	X	X	X	X	X	X	Increment all 6 dB left shift contents of all RDAC Registers, stops at all "Ones."
14	1	1	1	0	0	0	0	A0	X	X	X	X	X	X	X	X	Increment contents of RDAC(A0) by "One," stops at all "Ones."
15	1	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	Increment contents of all RDAC Registers "One," stops at all "Ones."
NOTES																	
1. The regis 2. The 3. The 4. Exec 5. Exec	0 outp data wi AC r remen on of on of	ut shift will be pr register t, decr the Op a NOP	fts out pesent is a vo remen peratio instru	the las in data volatile nt, and on colu uction	aight byte 0 scratc d shift umn n minin	t bits of 0. Instr ch pad comm noted in mizes	of data struction ad regis mands in the powe	clock ns follo ster th ignore table dissi	o the seria \#9 and refreshed conten place n.	rial regi \#10 ed at p ts of th when	gister for must b powerthe shift the $\overline{\mathrm{CS}}$	or daisy be a full -on from ift regis $\overline{\mathrm{S}}$ strob	y-chain ull 16-b rom th gister D obe retur		ation. word to espond yte 0. to logic	Exceptio to comp ding no high.	following Instruction \#9 or \#10 the selected internal y clock out the contents of the serial register. latile EEM EM register.

ADVANCED CONTROL MODES

The AD 5232 digital potentiometer contains a set of user programming features to address the wide applications available to these universal adjustment devices. K ey programming features include:
Independently Programmable Read and Write to all registers.

- Simultaneous refresh of all RDAC wiper registers from corresponding internal EEM EM registers.
- Increment and Decrement instructions for each RDAC wiper register.
- Left and right bit shift of all RDAC wiper registers to achieve 6 dB level changes.
- N onvolatile storage of the present scratch pad RDAC register values into the corresponding EEM EM register.
- F ourteen extra bytes of user-addressable electrical-erasable memory.

Increment and Decrement Commands

The increment and decrement commands (\#14, \#15, \#6, \#7) are useful for the basic servo adjustment application. This command simplifies microcontroller software coding by eliminating the need to perform a readback of the current wiper position, then add one to the register contents using the microcontroller's adder. The microcontroller simply sends an increment command (\#14) to the digital POT, which will automatically move the wiper to the next resistance segment position. T he master increment command (\#15) will move all POT wipers by one position from their present position to the next resistor segment position. The direction of movement is referenced to Terminal B. Thus each increment \#15 command will move the wiper tap position farther away from T erminal B.

Logarithmic Taper Mode Adjustment

Programming instructions allow a decrement and an increment wiper position control by individual POT or in a ganged POT arrangement where both wiper positions are changed at the same time. These settings are activated by the 6 dB decrement and 6 dB increment instructions \#4 and \#5 and \#12 and \#13 respectively. For example, starting with the wiper connected to Terminal B executing nine increment instructions (\#12) would move the wiper in $+6 d B$ steps from the 0% of $R_{B A}$ (B terminal) position to the 100% of $R_{B A}$ position of the AD 5232 8-Bit potentiometer. The 6 dB increment instruction doubles the value of the RDAC register contents each time the command is executed. When the wiper position is greater than midscale, the last 6 dB increment instruction will cause the wiper to go to the Full-Scale 255 code position. Any additional +6 dB instruction will no longer change the wiper position from full scale (RDAC register code = 255) .
Figure 6 illustrates the operation of the 6 dB shifting function on the individual RDAC register data bits for the 8-bit AD 5232 example. Each line going down the table represents a successive shift operation. Very important: the left shift \#12 and \#13 commands were modified so that if the data in the RDAC register is equal to zero and the data is left shifted, it is then set to code 1.

Also the left shift commands were modified so that if the data in the RDAC register is greater than or equal to midscale and the data is left shifted then the data in the RDAC register is set to full-scale. This makes the left shift function as close to ideally logarithmic as is possible.
The right shift \#4 and \#5 commands will be ideal only if the LSB is zero (i.e., ideal logarithmic-no error). If the LSB is a one then the right shift function generates a linear half LSB error, which translates to a code dependent logarithmic error for odd codes only as shown in the attached plots, (see Figure 5). The plot shows the errors of the odd codes for the AD 5232.

Figure 6. Detail Left and Right Shift Function for the 8-Bit AD5232
Actual conformance to a logarithmic curve between the data contents in the RDAC register and the wiper position for each Right Shift \#4 and \#5 command execution contains an error only for the odd codes. Even codes are ideal except zero right shift or greater than half-scale left shift. The graph in Figure 7 shows plots of Log_Error [i.e., $20 \times \log 10$ (error/code)]. F or example, code 3 Log Error $=20 \times \log 10(0.5 / 3)=-15.56 \mathrm{~dB}$, which is the worst case. The plot of Log_Error is more significant at the lower codes.

Figure 7. Plot of Log_Error Conformance for Odd Codes Only (Even Codes Are Ideal)

USING ADDITIONAL INTERNAL NONVOLATILE EEMEM

T he AD 5232 contains additional internal user storage registers (EEM EM) for saving constants and other 8-bit data. T able IV provides an address map of the internal nonvolatile storage registers shown in the functional block diagram as EEM EM 1, EEM EM 2, and bytes of USER EEM EM .

Table IV. EEMEM Address Map

EEMEM	EEMEM Contents of Each Address (ADDR)
0000	AD5232 (8B)

NOTES

${ }^{1}$ RDAC data stored in EEM EM locations are transferred to their corresponding RDAC REGISTER at Power ON, or when instructions Inst\#1 and Inst\#8 are executed.
${ }^{2}$ USER <data> is internal nonvolatile EEM EM registers available to store and retrieve constants using Inst\#3 and Inst\#9 respectively. ${ }^{3}$ AD 5232 EEM EM locations are 1 byte each (8 bits).
${ }^{4}$ Execution of instruction \#1 leaves the device in the Read M ode power consumption state. After the last Instruction \#1 is executed, the user should perform a NOP, Instruction \#0 com mand to return the device to the low power idle state.

Table V. RDAC and Digital Register Address Map

Register Address (AD DR)	Name of Register* AD5232 (8B)
0000	RD AC1
0001	RD AC2
*RDACx registers contain data determining the	

*RDACx registers contain data determining the position of the variable resistor wiper.

TERMINAL VOLTAGE OPERATING RANGE

The digital potentiometer's positive V_{DD} and negative V_{SS} power supply defines the boundary conditions for proper three-terminal programmable resistance operation. Signals present on terminals $\mathrm{A}, \mathrm{B}, \mathrm{W}$ that exceed V_{DD} or V_{SS} will be clamped by a forward biased diode; see Figure 8.
The ground pin of the AD 5232 device is primarily used as a digital ground reference, which needs to be tied to the PCBs' common ground. T he digital input logic signals to the AD 5232 must be referenced to the devices' ground pin (GND), and satisfy the logic minimum input high level and the maximum low level defined in the specification table of this data sheet.
An internal level-shift circuit between the digital interface and the wiper switch control ensures that the common-mode voltage range of the three-terminals A, W, and B extends from $V_{S S}$ to $V_{D D}$.

Figure 8. Maximum Terminal Voltages Set by $V_{D D}$ and $V_{S S}$

DETAIL POTENTIOMETER OPERATION

The actual structure of the RDAC is designed to emulate the performance of a mechanical potentiometer. The patent-pending RDAC contains multiple strings of connected resistor segments, with an array of analog switches that act as the wiper connection to several points along the resistor array. The number of points is the resolution of the device. F or example, the AD 5232 has 256 connection points allowing it to provide better than 0.5% setability resolution. Figure 9 provides an equivalent diagram of the connections between the three terminals that make up one channel of the RDAC. The SW A and $S W_{B}$ will always be $0 N$, while one of the switches SW (0) to SW $\left(2^{N}-1\right)$ will be ON one at a time depending upon the resistance step decoded from the D ata Bits. The resistance contributed by R_{W} must be accounted for in the output resistance. The SW S_{A} and SW ${ }_{B}$ will always be ON while one of the switches SW(0) to SW ($2^{N}-1$) will be $O N$ one at a time, depending upon the resistance step decoded from the D ata Bits. The resistance contributed by R_{W} must be accounted for in the output resistance.

Figure 9. Equivalent RDAC Structure (Patent Pending)

Table VI. Nominal Individual Segment Resistor Values (Ω)

Device Resolution	Segment Resistor Size for $R_{A B}$ End-to-End Values			
	$\mathbf{1 0} \mathbf{k} \boldsymbol{\Omega}$ Version	$\mathbf{5 0} \mathbf{~} \boldsymbol{\Omega}$ Version	$\mathbf{1 0 0} \mathbf{k} \boldsymbol{\Omega}$ Version	
8 -B it	78.10	390.5	781.0	

PROGRAMMING THE VARIABLE RESISTOR Rheostat Operation

The nominal resistances of the RDAC between terminals A and B are available with values of $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. The final digits of the part number determine the nominal resistance value, e.g., $10 \mathrm{k} \Omega=10 ; 100 \mathrm{k} \Omega=100$. The nominal resistance $\left(\mathrm{R}_{\mathrm{AB}}\right)$ of the AD 5232 VR has 256 contact points accessed by the wiper terminal, plus the B terminal contact. The 8-bit data word in the RDAC latch is decoded to select one of the 256 possible settings.
The general transfer equation, which determines the digitally programmed output resistance between $W x$ and $B x$, is:

$$
\begin{equation*}
R_{W B}(D x)=(D x) / 2^{N} \times R_{B A}+R_{W} \tag{1}
\end{equation*}
$$

Where N is the resolution of the $V R, D x$ is the data contained in the RDACx latch, and $R_{B A}$ is the nominal end-to-end resistance.
F or example, the following output resistance values will be set for the following RDAC Iatch codes (applies to the 8 -bit, $10 \mathrm{k} \Omega$ potentiometers):

Table VII. Nominal Resistance Value at Selected Codes for $R_{\text {AB }}=10 \mathrm{k} \Omega$

D (DEC)	$\mathbf{R}_{\text {WB }}$ (V)	Output State
255	10011	Full-Scale
128	5050	M idscale
1	89	1 LSB
0	50	Zero-Scale*(Wiper C ontact Resistance)

*N ote that in the zero-scale condition a finite wiper resistance of 50Ω is present. C are should be taken to limit the current flow between W and B in this state to a maximum continuous value of 2 mA to avoid degradation or possible destruction of the internal switch metalization. Intermittent current operation to 20 mA is allowed.

Figure 10. Symmetrical RDAC Operation
Like the mechanical potentiometer the RDAC replaces, the AD 5232 parts are totally symmetrical. The resistance between the wiper W and terminal A also produces a digitally controlled resistance $\mathrm{R}_{\text {wA }}$. F igure 10 shows the symmetrical programmability of the various terminal connections. When these terminals are used the B-terminal should be tied to the wiper. Setting the resistance value for $R_{W A}$ starts at a maximum value of resistance and decreases as the data loaded in the latch is increased in value. T he general transfer equation for this operation is:

$$
\begin{equation*}
R_{W A}(D x)=\left(2^{N}-D x\right) / 2^{N} \times R_{B A}+R_{W} \tag{2}
\end{equation*}
$$

where N is the resolution of the $V R, D x$ is the data contained in the RDACx latch, and $R_{B A}$ is the nominal end-to-end resistance. F or example, the following output resistance values will be set for the following RD AC latch codes (applies to 8-bit, $10 \mathrm{k} \Omega$ potentiometers).

Table VIII. Nominal Resistance Value at Selected Codes for $R_{A B}=10 \mathrm{k} \Omega$

D (DEC)	$\mathbf{R}_{\text {WA }}$ (W)	Output State
255	89	Full-Scale
128	5050	M idscale
1	10011	1 LSB
0	10050	Zero-Scale

The multichannel AD 5232 has $a \pm 0.2 \%$ typical distribution of internal channel-to-channel $R_{B A}$ match. Device-to-device matching is process-lot-dependent and exhibits a -40% to $+20 \%$ variation. The change in $R_{B A}$ with temperature has a $600 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient.

PROGRAMMING THE POTENTIOMETER DIVIDER
 Voltage Output Operation

The digital potentiometer easily generates an output voltage proportional to the input voltage applied to a given terminal. For example, connecting A-terminal to 5 V and B -terminal to ground produces an output voltage at the wiper which can be any value starting at zero volts up to 5 V . Each LSB of voltage is equal to the voltage applied across terminal $A B$ divided by the 2^{N} position resolution of the potentiometer divider. The general equation defining the output voltage with respect to ground for any given input voltage applied to terminals $A B$ is:

$$
\begin{equation*}
V_{W}(D x)=D x / 2^{N} \times V_{A B}+V_{B} \tag{3}
\end{equation*}
$$

Operation of the digital potentiometer in the divider mode results in more accurate operation over temperature. H ere the output voltage is dependent on the ratio of the internal resistors, not the absolute value; therefore, the drift improves to $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. There is no voltage polarity restriction between terminals A, B, and W , as long as the terminal voltage ($\mathrm{V}_{\text {TERM }}$) stays within $\mathrm{V}_{S S}<\mathrm{V}_{\text {TERM }}<\mathrm{V}_{\mathrm{DD}}$.

OPERATION FROM DUAL SUPPLIES

The AD 5232 can be operated from dual supplies enabling control of ground-referenced ac signals. See Figure 11 for a typical circuit connection.

Figure 11. Operation from Dual Supplies

Figure 12. RDAC Circuit Simulation Model for RDAC $=10 \mathrm{k} \Omega$

The internal parasitic capacitances and the external capacitive loads dominate the ac characteristics of the RDAC s. C onfigured as a potentiometer divider the -3 dB bandwidth of the AD5232BRU 10 ($10 \mathrm{k} \Omega$ resistor) measures 500 kHz at half scale. Figure T PC 10 provides the large signal BODE plot characteristics of the three resistor versions $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. A parasitic simulation model has been developed, and is shown in Figure 12. Listing I provides a macro model net list for the $10 \mathrm{k} \Omega$ RDAC:

Listing I. Macro Model Net List for RDAC

```
.PARAM DW=255, RDAC=10E3
*
.SUBCKT DPOT (A,W,B)
*
\begin{tabular}{lccl} 
CA & A & 0 & \(\{45 \mathrm{E}-12\}\) \\
RAW & A & W & \(\{(1-\mathrm{DW} / 256) * R D A C+50\}\) \\
CW & W & 0 & \(60 \mathrm{E}-12\) \\
RBW & W & B & \(\{D W / 256 * R D A C+50\}\) \\
CB & B & 0 & \(\{45 \mathrm{E}-12\}\)
\end{tabular}
*
.ENDS DPOT
```


APPLICATION PROGRAMMING EXAMPLES

The following command sequence examples have been developed to illustrate a typical sequence of events for the various features of the AD 5232 nonvolatile digital potentiometer.
[PCB = Printed C ircuit Board containing the AD 523x part]. Instruction numbers (Commands), addresses and data appearing at SDI and SDO pins are listed in hexadecimal.

Table IX. Set Two Digital POTs to Independent Data Values

SDI	SDO	Action
$\mathrm{B140}_{\mathrm{H}}$	XXXX	H
$\mathrm{B080} \mathrm{H}_{\mathrm{H}}$	$\mathrm{B} 140_{\mathrm{H}}$	L oads 40 Wiper W W 2 moves into R D AC 2 register, $1 / 4$ full-scale position.
Loads 80 Wiper W W 1 moves into RD AC1 1/2 Full-Scale position.		

Table X. Active Trimming of One POT Followed by a Save to Nonvolatile Memory (PCB Calibrate)

SDI	SDO	Action
B040 ${ }_{\text {H }}$	XXXX ${ }_{\text {H }}$	Loads 40_{H} data into RDAC 1 register, Wiper W 1 moves to $1 / 4$ full-scale position.
$E 0 X X_{H}$	B040 ${ }_{\text {H }}$	Increments RDAC 1 register by one to 41_{H}, W iper W 1 moves one resistor segment away from terminal B.
$E X^{\prime} X_{H}$	EOXX ${ }_{\text {H }}$	Increments RDAC 1 register by one to 42_{H}, Wiper W 1 moves one more resistor segment away from terminal B. Continue until desired wiper position reached.
$20 X^{\prime}{ }_{H}$	E0XX ${ }_{\text {H }}$	Saves RDAC1 register data into corresponding nonvolatile EEM EM 1 memory $\operatorname{ADDR}=O_{H}$.

EQUIPMENT CUSTOMER STARTUP SEQUENCE FOR A

 PCB CALIBRATED UNIT WITH PROTECTED SETTINGSPCB setting: T ie $\overline{\mathrm{WP}}$ to GND [prevents changes in PCB wiper set position]
Power $V_{D D}$ and $V_{S S}$ with respect to $G N D$
Optional: Strobe $\overline{\text { PR }}$ pin [ensures full power ON preset of wiper register with EEM EM contents in unpredictable supply sequencing environments]

Table XI. Using Left Shift by One to Change Circuit Gain in 6 dB Steps

SDI	SDO	Action
C $1 X_{H}$	$X X X X_{H}$	M oves W iper W2 to double the present data value contained in RD AC 2 regis- ter, in the direction of the A terminal. M oves W iper W2 to double the present data value contained in RD AC 2 regis- ter, in the direction of the A terminal.

Table XII. Storing Additional Data in Nonvolatile Memory

SDI	SDO	Action
$3280_{\text {H }}$	XXXX ${ }_{\text {H }}$	Stores 80_{H} data into spare EEM EM location USER1.
3340_{H}	XXXX ${ }_{\text {H }}$	Stores 40_{H} data into spare EEM EM location USER2.

Table XIII. Reading Back Data from Various Memory Locations

SDI	SDO	Action
$94 X X_{H}$	$X X X X_{H}$	Prepares data read from U SER3 location. Assumption: U SER3 previously loaded with 80_{H}.
$00 X X_{H}$	$X X 80_{H}$	N OP instruction \#0 sends 16-bit word out of SD O where the last 8 bits con- tain the contents of U SE R location. N OP command ensures device returns to idle power dissipation state.

A nalog D evices offers the AD 5232EVAL board for sale to simplify evaluation of these programmable devices controlled by a personal computer via the printer port.

TEST CIRCUITS

Figures 13 to 22 define the test conditions used in the product specification's table.

Figure 13. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)

Figure 14. Potentiometer Divider Nonlinearity Error Test Circuit (INL, DNL)

Figure 15. Wiper Resistance Test Circuit

$V_{+}=V_{D D} \pm 10 \%$
PSRR $(\mathrm{dB})=20 \operatorname{LOG}\left(\frac{\Delta V_{M S}}{\Delta V_{D D}}\right)$
PSS $(\% / \%)=\frac{\Delta V_{M S} \%}{\Delta V_{D D} \%}$

Figure 16. Power Supply Sensitivity Test Circuit (PSS, PSRR)

Figure 17. Inverting Gain Test Circuit

Figure 18. Noninverting Gain Test Circuit

Figure 19. Gain vs. Frequency Test Circuit

Figure 20. Incremental ON Resistance Test Circuit

Figure 21. Common-Mode Leakage Current Test Circuit

Figure 22. Analog Crosstalk Test Circuit

Flash/EEMEM Reliability

The Flash/EE M emory array on the AD 5232 is fully qualified for two key Flash/EE memory characteristics, namely F lash/E E M emory Cycling Endurance and Flash/E E M emory D ata R etention.

Endurance quantifies the ability of the Flash/EE memory to be cycled through many Program, Read, and Erase cycles. In real terms, a single endurance cycle is composed of four independent, sequential events. These events are defined as:
a. Initial page erase sequence
b. Read/verify sequence
c. Byte program sequence
d. Second read/verify sequence

During reliability qualification Flash/EE memory is cycled from 00_{H} to FF_{H} until a first fail is recorded, signifying the endurance limit of the on-chip Flash/EE memory.
As indicated in the specification pages of this data sheet, the AD 5232 Flash/EE M emory Endurance qualification has been carried out in accordance with JEDEC Specification A117 over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The results allow the specification of a minimum endurance figure over supply and temperature of 100,000 cycles, with an endurance figure of 700,000 cycles being typical of operation at $25^{\circ} \mathrm{C}$.
Retention quantifies the ability of the Flash/EE memory to retain its programmed data over time. A gain, the AD 5232 has been qualified in accordance with the formal JEDEC Retention Lifetime Specification (A117) at a specific junction temperature $\left(T_{j}=55^{\circ} \mathrm{C}\right.$). As part of this qualification procedure, the Flash/EE memory is cycled to its specified endurance limit described above, before data retention is characterized. This means that the F lash/E E memory is guaranteed to retain its data for its full-specified retention lifetime every time the Flash/EE memory is reprogrammed. It should also be noted that retention lifetime, based on an activation energy of 0.6 eV , will derate with T_{J} as shown in Figure 23.

Figure 23. Flash/EE Memory Data Retention

AD5232- Typical Performance Characteristics

TPC 1. INL vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay

TPC 2. DNL vs. Code, $T_{A}=-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$ Overlay

TPC 3. R-DNL vs. Code $R_{A B}=10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ Overlay

TPC 4. $\Delta R_{W B} / \Delta T$ vs. Code $R_{A B}=10 \mathrm{k} \Omega, V_{D D}=5 \mathrm{~V}$

TPC 5. $\Delta V_{W B} / \Delta T$ vs. Code $R_{A B}=10 \mathrm{k} \Omega, V_{D D}=5 \mathrm{~V}$

TPC 6. I ${ }_{C M}$ vs. Temperature

TPC 7. $I_{D D}$ vs. Temperature

TPC 8. $I_{D D}$ vs. Time (Save) Program Mode

TPC 9. I $I_{D D}$ vs. Time Read Mode

TPC 10. $-3 d B$ Bandwidth vs. Resistance

TPC 11. Total Harmonic Distortion vs. Frequency

TPC 12. Wiper On-Resistance vs. Code

TPC 13. Gain vs. Frequency vs. Code, $R_{A B}=10 \mathrm{k} \Omega$

TPC 14. Gain vs. Frequency vs. Code, $R_{A B}=50 \mathrm{k} \Omega$

TPC 15. Gain vs. Frequency vs. Code, $R_{A B}=100 \mathrm{k} \Omega$

TPC 16. PSRR vs. Frequency

TPC 17. Analog Crosstalk vs. Frequency

DIGITAL POTENTIOMETER FAMILY SELECTION GUIDE

Part Number	Number of VRs per Package	Terminal Voltage Range (V)	Interface Data Control	Nominal Resistance (k Ω)	Resolution (Number of Wiper Positions)	Power Supply Current (IDD)($\mu \mathrm{A}$)	Packages	Comments
AD5201	1	$\pm 3,+5.5$	3-wire	10, 50	33	40	μ SOIC-10	Full ac Specs, Dual Supply, Pwr-On-Reset, Low Cost
AD 5220	1	5.5	UP/ DOWN	10, 50, 100	128	40	$\begin{aligned} & \text { PDIP, SO-8, } \\ & \mu \text { SOIC-8 } \end{aligned}$	No Rollover, Pwr-On-Reset
AD 7376	1	$\pm 15,+28$	3-wire	10, 50, 100, 1000	128	100	$\begin{aligned} & \text { PDIP-14, } \\ & \text { SOL-16, } \\ & \text { TSSOP-14 } \end{aligned}$	Single 28 V or Dual $\pm 15 \mathrm{~V}$ Supply 0 peration
AD5200	1	$\pm 3,+5.5$	3-wire	10, 50	256	40	μ SOIC-10	Full ac Specs, Dual Supply, Pwr-On-Reset
AD8400	1	5.5	3-wire	1,10,50,100	256	5	S0-8	Full ac Specs
AD5260	1	$\pm 5,+15$	3-wire	20,50, 200	256	60	T SSOP-14	+5 V to +15 V or $\pm 5 \mathrm{~V}$ O peration, TC < $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
AD 5241	1	$\pm 3,+5.5$	2-wire	10, 100, 1000	256	50	$\begin{aligned} & \text { SO-14, } \\ & \text { TSSOP-14 } \end{aligned}$	$1^{2} \mathrm{C}$ Compatible, TC $<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
AD5231	1	$\pm 2.75,+5.5$	3-wire	10,50, 100	1024	10	TSSOP-16	N onvolatile M emory, D irect Program, I/D, ± 6 dB Settability
AD5222	2	$\pm 3,+5.5$	UP/ DOWN	10, 50, 100, 1000	128	80	$\begin{aligned} & \text { SO-14, } \\ & \text { TSSOP-14 } \end{aligned}$	No Rollover, Stereo, Pwr-On-Reset, $\mathrm{TC}<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
AD8402	2	5.5	3-wire	1, 10, 50, 100	256	5	$\begin{aligned} & \text { PDIP, SO-14, } \\ & \text { TSSOP-14 } \end{aligned}$	Full ac Specs, nA Shutdown Current
AD5207	2	$\pm 3,+5.5$	3-wire	10, 50, 100	256	40	T SSOP-14	Full ac Specs, Dual Supply, Pwr-OnR eset, SD 0
AD5232	2	$\pm 2.75,+5.5$	3-wire	10, 50, 100	256	10	T SSOP-16	N onvolatile M emory, D irect Program, I/D, $\pm 6 \mathrm{~dB}$ Settability
AD5235*	2	$\pm 2.75,+5.5$	3-wire	25, 250	1024	20	T SSOP-16	N onvolatile M emory, D irect Program, TC $<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
AD 5242	2	$\pm 3,+5.5$	2-wire	10, 100, 1000	256	50	$\begin{aligned} & \text { SO-16, } \\ & \text { TSSOP-16 } \end{aligned}$	$1^{2} \mathrm{C}$ Compatible, TC $<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
AD5262*	2	$\pm 5,+15$	3-wire	20,50, 200	256	60	T SSOP-16	+5 V to +15 V or $\pm 5 \mathrm{~V}$ O peration, TC < $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
AD5203	4	5.5	3-wire	10, 100	64	5	$\begin{aligned} & \text { PDIP, SOL-24, } \\ & \text { TSSOP-24 } \end{aligned}$	Full ac Specs, nA Shutdown Current
AD5233	4	$\pm 2.75,+5.5$	3-wire	10, 50, 100	64	10	T SSOP-16	N onvolatile M emory, D irect Program, I/D,$\pm 6 \mathrm{~dB}$ Settability
AD 5204	4	$\pm 3,+5.5$	3-wire	10, 50, 100	256	60	$\begin{aligned} & \text { PDIP, SOL-24, } \\ & \text { TSSOP-24 } \end{aligned}$	Full ac Specs, Dual Supply, Pwr-On-Reset
AD8403	4	5.5	3-wire	1,10,50,100	256	5	$\begin{aligned} & \text { PDIP, SOL-24, } \\ & \text { TSSOP-24 } \end{aligned}$	Full ac Specs, nA Shutdown Current
AD 5206	6	$\pm 3,+5.5$	3-wire	10, 50, 100	256	60	$\begin{aligned} & \text { PDIP, SOL-24, } \\ & \text { TSSOP-24 } \end{aligned}$	Full ac Specs, Dual Supply, Pwr-On-Reset

[^1]
OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead TSSOP

(RU-16)

[^0]: *L ine 1 contains ADI logo symbol and the data code YYWW, line 2 contains detail model number listed in this column.

[^1]: ${ }^{*}$ F uture Product, consult factory for latest status.
 L atest Digital Potentiometer Information located at: www.analog.com/D igitalPotentiometers

